Given
The data,
To find:
The variance, standard deviation, P(X ≥ -1), and P(X ≤ -3).
Step-by-step explanation:
It is given that,
Then,
The variance is,
![\begin{gathered} Var[x]=(-4-(-2.1))^2*0.2+(-3-(-2.1))^2*0.3+(-2-(-2.1))^2 \\ *0.1+(-1-(-2.1))^2*0.2+(0-(-2.1))^2*0.2 \\ =(-4+2.1)^2*0.2+(-3+2.1)^2*0.3+(-2+2.1)^2*0.1+(-1+2.1)^2 \\ *0.2+(2.1)^2*0.2 \\ =3.61*0.2+0.81*0.3+0.01*0.1+1.21*0.2+4.41*0.2 \\ =0.722+0.243+0.001+0.242+0.882 \\ =2.09 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ttb9zhikfcxfu5t4s4eh5f8r2bnnzxca2.png)
And the standard deviation is,
![\begin{gathered} SD=√(Var[x]) \\ =√(2.09) \\ =1.45 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c1b7i246o7ntbuikm2xqyscc3rtj18sqos.png)
Also,

Hence, the answers are,
Variance is 2.09
Standard deviation is 1.45
P(X ≥ -1) is 0.4
P(X ≤ -3) is 0.5.