Recall that the domain of a rational function consists of all the real numbers x except those for which the denominator is 0.
The denominator of the given rational function is:
![d(x)=x^2+11x-18.](https://img.qammunity.org/2023/formulas/mathematics/college/djyejdmeyxk0twgmecpnmzgqdrt6iyq7zb.png)
Notice that:
![\begin{gathered} x^2+11x+18=x^2+2x+9x+9*2 \\ =x(x+2)+9(x+2)=(x+9)(x+2). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t11lb1rup48d1uctdc78t954ys4xgwlv90.png)
Therefore d(x)=0 at x=-9 and x=-2, then those values are not in the domain of g.
Answer:
![x=-9,-2.](https://img.qammunity.org/2023/formulas/mathematics/college/h7fbjohgss1u2anoc54mbyv8kbttbf43fw.png)