Let's evaluate each statement to check wheter they are true or not.
A. "The mean would decrease by omitting Maria's score".
The mean is the sum of all the scores divided by the number of attempts. Since Maria had a higher score, if we omitted it then the sum would decrease and by extension the mean would decrease as well.
This option is true.
B. The median would decrease by omitting Maria's score.
The median is the value on the middle of the series, if we omit Maria's score, which was one of the highest then the middle of the series should move to the left, decreasing it.
This option is true.
C. The range would decrease by omitting Maria's score.
The range of a function are the values that said function can have as an output. If we omit Maria's score then the output of the function would be only the values scored by their team mates, which would go from 65 to 80, instead of 65 to 97. Therefore the range would decrease.
This option is true.
D. The interquartile range would decrease by omitting Maria's score.
The interquartile range are the values between the 25% values of the series and the 75% values of the series. Since Maria is the highest score between her teammates, she is not considered into the IQR and the value wouldn't change by removing her score.
This option is false.
E. The standard deviation would decrease by omitting Maria's score.
The standard deviation is the mean amount of variation in a series, since all her teammates are in the range of 65% to 80% and Maria is way above on the 97% score, by taking her score out we decrease the standard deviation, because there will be less variation in the serie.
This option is true.