In the given figure, angle ABC is formed by a tangent and a secant.
The angle formed by tangent and secant is given by
![m\angle ABC=(1)/(2)(m\bar{AD}-m\bar{AC})](https://img.qammunity.org/2023/formulas/mathematics/college/699y7i3985xnx9n8m2or2bitwnappsxor8.png)
Where mAD and mAC are the intercepted arcs.
For the given case,
![\begin{gathered} m\angle ABC=(4x+15)\degree \\ m\bar{AD}=(17x+2)\degree \\ m\bar{AC}=(7x-10)\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1zfsnz1ggpte3rcgizvk1t86jxz04kpwgs.png)
Let us substitute the given values into the above formula and solve for x
![\begin{gathered} m\angle ABC=(1)/(2)(m\bar{AD}-m\bar{AC}) \\ (4x+15)\degree=(1)/(2)\lbrack(17x+2)\degree-(7x-10)\degree\rbrack \\ 2\cdot(4x+15)\degree=(17x+2)\degree-(7x-10)\degree \\ 8x+30=17x+2-7x+10 \\ 8x-17x+7x=2+10-30 \\ -2x=-18 \\ x=(-18)/(-2) \\ x=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a6okmkxgqhbyisq0scuprjw9e3wmu7abu6.png)
The value of x is 9
So, the measure of angle ABC is
![\begin{gathered} m\angle ABC=4x+15 \\ m\angle ABC=4(9)+15 \\ m\angle ABC=36+15 \\ m\angle ABC=51\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/68hiwexc6b2lh5y0aova1gxv23pqi0rw6k.png)
Therefore, the measure of angle ABC is 51°