The Law of Cosines
Let a,b, and c be the length of the sides of a given triangle, and x the included angle between sides a and b, then the following relation applies:
![c^2=a^2+b^2-2ab\cos x](https://img.qammunity.org/2023/formulas/mathematics/college/i00oct8cbahstoueca8l476mdvas6y5kj0.png)
The triangle shown in the figure has two side lengths of a=4 and b=5. The included angle between them is x=100°. We can find the side length c by substituting the given values in the formula:
![c^2=4^2+5^2-2\cdot4\cdot5\cos 100^o](https://img.qammunity.org/2023/formulas/mathematics/college/ym7x65ekvkx0udp28fkc4l8bg7nypc2tz0.png)
Calculating:
![c^2=16+25-40\cdot(-0.17365)](https://img.qammunity.org/2023/formulas/mathematics/college/lcygz8hiagwdmwbj5ck79lbtbas5juz8mc.png)
![\begin{gathered} c^2=47.946 \\ c=\sqrt[]{47.946}=6.92 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7s7vs45ull4945krf9rk1hyh1d1mxogcmx.png)
Now we can apply the law of the sines:
![(4)/(\sin A)=(5)/(\sin B)=(c)/(\sin 100^o)](https://img.qammunity.org/2023/formulas/mathematics/college/y32vdf37klg119p3ztg66mkcvl5mgpx5c1.png)
Combining the first and the last part of the expression above:
![\begin{gathered} (4)/(\sin A)=(c)/(\sin100^o) \\ \text{Solving for sin A:} \\ \sin A=(4\sin100^o)/(c) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8oos25yvkomdfb6qcu3a80zi8k9uzz9qdd.png)
Substituting the known values:
![\begin{gathered} \sin A=0.57 \\ A=\arcsin 0.57=34.7^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d2uck819yuq2eg0spka9pe6pm6rhjz5yir.png)
The last angle can be ob