Answer:
$4,167.27
Explanation:
The amount, A(n) in an account for a Principal invested at compound interest is calculated using the formula:
![\begin{gathered} A(n)=P(1+(r)/(k))^(nk)\text{ }where=\begin{cases}P=Prin\text{cipal} \\ r=\text{Annual Interest Rate} \\ k=\text{Compounding Period}\end{cases} \\ n=nu\text{mber of years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zg0knc6md10nzmg18wfu7t4osrlfax7orx.png)
In the given problem:
• P = $11,000.00
,
• r=11% = 0.11
,
• n= 3 years
,
• k=2 (semi-annual)
Substitute these into the formula:
![\begin{gathered} A(n)=11,000(1+(0.11)/(2))^(2*3) \\ =11,000(1+0.055)^6 \\ =11,000(1.055)^6 \\ =\$15,167.27 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yk55hpe1uqmn192zimng41kj25pt5mwpjq.png)
Next, we find the interest earned.
![\begin{gathered} \text{Interest}=\text{Amount}-\text{Prncipal} \\ =15167.27-11000 \\ =\$4,167.27 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tbvvlquhcg8tjjynu4irl5ze9ho1glk9qq.png)
You would earn $4,167.27 in interest (rounded to 2 decimal places).