Given:
The expression is given as,
![\sqrt[]{36p^(10)m^6}](https://img.qammunity.org/2023/formulas/mathematics/college/8g0rsjqgqhhh1z0mwzam724zn80hslo8a5.png)
The objective is to rewrite the expression without any radical form.
Step-by-step explanation:
The given expression can be written as,
![\sqrt[]{36p^(10)m^6}=\sqrt[]{6^2p^(10)m^6}\text{ . . . . .(1)}](https://img.qammunity.org/2023/formulas/mathematics/college/klg2n0xe1s8k7vhiebf3axou66shz1mzj3.png)
In general, the radical form of a square root can be written as,
![\sqrt[]{x}=x^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/qs7vpqo09ne5jtgklc0yiwbw2nxtgclx0u.png)
Then, the equation (1) can be written as
![\sqrt[]{36p^(10)m^6}=(6^2p^(10)m^6)^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/70rfwmaqiqo0bsytpo23bwabmea7exill6.png)
On further solving the above expression,
![\begin{gathered} \sqrt[]{36p^(10)m^6}=6^{2*(1)/(2)}p^{10*(1)/(2)}m^{6*(1)/(2)} \\ =6p^5m^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lkv19akatw1iyt7fz9evxllox3ws0t82na.png)
Hence, the simplified expression of the given term is,
