we have
49x^2 + 16y^2 - 392x +160y + 400 = 0
Complete the square
Group terms
![(49x^2-392x)+(16y^2+160y)=-400](https://img.qammunity.org/2023/formulas/mathematics/college/a1yl5slevqdjt51h9q9bc1gx14qp53vk97.png)
Factor 49 and 16
![49(x^2-8x)+16(y^2+10y)=-400](https://img.qammunity.org/2023/formulas/mathematics/college/vp96xghlwrwd7iiy2wftkqzvp4lo84qvve.png)
![49(x^2-8x+16)+16(y^2+10y+25)=-400+16(49)+25(16)](https://img.qammunity.org/2023/formulas/mathematics/college/z49p4jph4dkuqesx9z7bsh0t0xfq65oa9s.png)
![\begin{gathered} 49(x^2-8x+16)+16(y^2+10y+25)=784 \\ 49(x^{}-4)^2+16(y+5)^2=784 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7o0js7mbnb322knjzqhnxp6iyku06pgi6f.png)
Divide by 784 both sides
![\begin{gathered} 49(x^{}-4)^2+16(y+5)^2=784 \\ \frac{49(x^{}-4)^2}{784}+(16(y+5)^2)/(784)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2jnjwx5to7btglgjqzmuosapc51r5p3j8c.png)
simplify
![\frac{(x^{}-4)^2}{16}+((y+5)^2)/(49)=1](https://img.qammunity.org/2023/formulas/mathematics/college/7lrmw7uk4e7dprqzrmko7b7tzbfyq3xnsk.png)
we have a vertical elipse
the center is the point (4,-5)
major semi axis is 7
we have
a^2=16 --------> a=4
b^2=49 ------> b=7
Find the value of c
![\begin{gathered} c=\sqrt[]{b^2-a^2} \\ c=\sqrt[]{33} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cf3cx0tu00k1b27ovvljzxo1hxll53ay53.png)
see the attached figure to better understand the problem