Solution:
The confidence interval is expressed as
where
![\begin{gathered} \bar{x}\text{ or }\mu\Rightarrow sample\text{ mean} \\ z\Rightarrow confidence\text{ level value} \\ s\Rightarrow sample\text{ standard deviation} \\ n\Rightarrow sample\text{ size} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8zu87af92iytth4txfza1xxnf4c50bd0g3.png)
Given a 99% confidence interval for a sample size of 891 with a mean of 20.8 and a standard deviation of 17.6, this implies that
![\begin{gathered} \bar{x}=20.8 \\ s=17.6 \\ n=891 \\ z=2.576 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e45sn227ku7y0co92bevy6bmyw4t9zqtco.png)
By substituting these values into the above equation, we have
![\begin{gathered} CI=20.8\pm(2.576*(17.6)/(√(891))) \\ =20.8\pm1.518866748 \\ Thus,\text{ } \\ \Rightarrow lower\text{ bound:} \\ 20.8-1.518866748=19.28113325 \\ \Rightarrow upper\text{ bound:} \\ 20.8+1.518866748=22.31886675 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cvg3qj0400jwlq2rfm22cjhw0v59fu9ml6.png)
Hence, we have
![19.281<\mu<22.319](https://img.qammunity.org/2023/formulas/mathematics/high-school/n12vz40gha1b7hoygi5m0kket59rdgt4j6.png)