Step 1
Write the equation of a line in slope point form
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/hkbzvop4iz62zgm93u190774353c4ig6id.png)
Where;
![\begin{gathered} y_2=\text{ 60} \\ x_2=2 \\ y_1=\text{ 30} \\ x_1=\text{ 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ncy3yjtfyws74iwo2rgnjynfrllxhhdv7o.png)
Step 2
Find the equation to represent the cost of the topsoil.
![y-30=(60-30)/(2-1)(x-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/axxj01ojbwd79et267jqifiijp00ln4nii.png)
![\begin{gathered} y-30\text{ = }(30)/(1)(x-1) \\ y-30=30x-30 \\ y=30x-30+30 \\ y=30x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gszrg5yvyg6hf21aleh9yfnabcfhk335cc.png)
The equation that represents the cost of the topsoil is
y=30x
Step 3
Find how the cost of the topsoil compares to the cost of the mulch.
![\begin{gathered} \text{The equation for the cost of the mulch y, in dollars is} \\ y=25x \\ \text{for x cubic yards of mulch} \\ \text{The equation for the cost of topsoil, y in dollars is} \\ y=30x \\ for\text{ x cubic yards of topsoil} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h0qpk6dwg1ek46tajpm43b6axg3449gbq3.png)
![undefined]()