Given:
![A=(276)/(1+11e^(-0.35t))](https://img.qammunity.org/2023/formulas/mathematics/college/w9sf7fpp4monczl1y7xvl86xbf52gy3woz.png)
Where A is the number of deer expected in the herd after t years.
We will find the following:
(a) How many deer will be present after 3 years?
So, substitute t = 3 into the given equation:
![A=(276)/(1+11e^(-.35*3))\approx56.9152](https://img.qammunity.org/2023/formulas/mathematics/college/yngbewrd7kzdayx0tou384fetym6j4ez3y.png)
Rounding to the nearest whole number
So, the answer will be A = 57
=========================================================
(b) How many years will it take for the herd to grow to 50 deer?
substitute A = 50 then solve for t
![\begin{gathered} 50=(276)/(1+11e^(-.35t)) \\ 1+11e^(-.35t)=(276)/(50) \\ \\ 11e^(-.35t)=(276)/(50)-1=4.52 \\ e^(-.35t)=(4.52)/(11) \\ -0.35t=ln((4.52)/(11)) \\ \\ t=(ln((4.52)/(11)_))/(-0.35)=2.54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w2chrrk80yjeugxv2yexu1c2338q97op3m.png)
Round your answer to the nearest whole number.
So, the answer will be t = 3