The volume of a right rectangular prism is given by
![V=\text{height}* length* width](https://img.qammunity.org/2023/formulas/mathematics/college/wg5dedd43lnyi896zxsbyb43zdjttcydtk.png)
From the given information, we know that
![\begin{gathered} \text{ height=13.5 ft} \\ \text{ length=13 ft} \\ \text{width = 12.5 ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dk7ad42dxl7amygdulxgz87q6bfth4lotg.png)
So, the volume is given by
![V=13.5*13*12.5ft^3](https://img.qammunity.org/2023/formulas/mathematics/college/3cxr6gk8522ot4a0tx9wmaadmfhkpfelth.png)
which gives
![V=2193.75ft^3](https://img.qammunity.org/2023/formulas/mathematics/college/i3flx2duj15o52cjtbqg554a49axtgjw3r.png)
Now, since the content weigh 0.18 pound per cubic foot and worth $7.18 per pound, the value of the container is given by,
![\text{ Value=}2193.75*0.18*7.18](https://img.qammunity.org/2023/formulas/mathematics/college/6hfnwyzo4b2klez55ru6k7go8v9cv2o4uu.png)
Therefore, by rounding to the nearest cent, the answer is:
![\text{Value}=\text{ \$2835.20}](https://img.qammunity.org/2023/formulas/mathematics/college/l5nb3n9naf7tdrmnsfopdo1fejvny44f3t.png)