Given data:
* The mass of the motorcycle is m = 244 kg.
* The speed of the motorcycle is u = 14.7 m/s.
Solution:
(A). The kinetic energy of the motorcycle is,
![K_1=(1)/(2)mu^2](https://img.qammunity.org/2023/formulas/physics/college/r8kijarzvqchoye1dpxdxqnykoyerkaxhl.png)
Substituting the known values,
![\begin{gathered} K_1=(1)/(2)*244*(14.7)^2_{} \\ K_1=26362.98\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wb6vgzd4kmo781qg1hxz0svpdjpagc243e.png)
Thus, the value of kinetic energy is 26362.98 J.
(B). If the speed of the motorcycle is increased by a factor of 1.6,
![\begin{gathered} v=14.7*1.6 \\ v=23.52\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/oxqw5qh7mrspztfk5l3j5ux13zka0krbhu.png)
Thus, the kinetic energy of the motorcycle becomes,
![\begin{gathered} K_2=(1)/(2)mv^2 \\ K_2=(1)/(2)*244*(23.52)^2 \\ K_2=67489.23\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/v46mgk1xff78ya3x0ydgn39ki02l90ohi7.png)
Dividing K_2 by K_1,
![\begin{gathered} (K_2)/(K_1)=(67489.23)/(26362.98) \\ (K_2)/(K_1)=2.56 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3ys0ou7cmuvt3ta5c3oy1x2kig0zd4f606.png)
Thus, the kinetic energy is increased by the factor of 2.56.
(C). The 1/3 of the kinetic energy in the first part is,
![\begin{gathered} K=(1)/(3)* K_1 \\ K=(1)/(3)*26362.98 \\ K=8787.66\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/suvjvhplwyhiuehe34kwkev66skgocmsv1.png)
Thus, the speed of the motorcycle with the kinetic energy K is,
![\begin{gathered} K=(1)/(2)mv^2_{}_{} \\ 8787.66=(1)/(2)*244* v^2 \\ 8787.66=122* v^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/844oy2d2gqxkqfyuh8cqibpk4qmepndfrh.png)
By simplifying,
![\begin{gathered} v^2=(8787.66)/(122) \\ v^2=72.03 \\ v\approx8.5\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6k4g421npnragsrkcfve9splxatroywobn.png)
Thus, the speed of the motorcycle is 8.5 m/s.