SOLUTION:
Case: Area of plane shapes
Method:
a) Parallelogram
To find the area we need to find the perpendicular height (using Pythagoras theorem)
![\begin{gathered} h^2+7^2=25^2 \\ h^2+49=625 \\ h^2=625-49 \\ h^2=576 \\ h=√(576) \\ h=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d2u2m6255gdj7zb3kum5xwabx9mygiuj4k.png)
The Area of a parallelogram is given as:
![\begin{gathered} A=bh \\ A=23*24 \\ A=552\text{ }ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sas4kfjm1y1zef764vpye5z4ir9my2gnmm.png)
b) Triangle
To find the area of the triangle, we need to find the base first
First, lets find 'a'
![\begin{gathered} a^2+60^2=70^2 \\ a^2+3600=4900 \\ a^2=4900-3600 \\ a^=√(1300) \\ a=36.06 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vy06tqwpuu8x76r3ppesb4ho06kefmn1nu.png)
The base, b
b= 2(a)
b= 2 (36.06)
b= 72.12
The area of the triangle is:
![\begin{gathered} A=(1)/(2)bh \\ A=(1)/(2)*72.12*60 \\ A=2163.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e0m7qgo5k2841xo4zaxczabbpzqasca3nc.png)
Final answer:
a) Parallelogram,
A= 552 square feet
b) Triangle
A= 2163.6 square feet