93.9k views
3 votes
7 1/3 × 2 2/11 3/5 × 6 2/34 1/5 × 1 1/14

7 1/3 × 2 2/11 3/5 × 6 2/34 1/5 × 1 1/14-example-1
User Dewi Rees
by
5.4k points

1 Answer

7 votes

It is easier to perform the operations if you convert the mixed fractions into improper fractions.

For point 1. Make the mixed fractions improper first


7(1)/(3)=(3\cdot7+1)/(3)=(21+1)/(3)=(22)/(3)
2(2)/(11)=(11\cdot2+2)/(11)=(22+2)/(11)=(24)/(11)

Now, the multiplication of fractions is done like this


(a)/(b)\cdot(c)/(d)=(a\cdot c)/(b\cdot d)

Then, you have


7(1)/(3)\cdot2(2)/(11)=(22)/(3)\cdot(24)/(11)=(528)/(33)=16

For point 2.


6(2)/(3)=(3\cdot6+2)/(3)=(18+2)/(3)=(20)/(3)

Now multiplying the improper fractions you have


(3)/(5)\cdot6(2)/(3)=(3)/(5)\cdot(20)/(3)=(60)/(15)=4

Finally for point 3.


4(1)/(5)=(5\cdot4+1)/(5)=(20+1)/(5)=(21)/(5)
1(1)/(14)=(14\cdot1+1)/(14)=(14+1)/(14)=(15)/(14)

Now multiplying the improper fractions you have


\begin{gathered} 4(1)/(5)\cdot1(1)/(14)=(21)/(5)\cdot(15)/(14)=(315)/(70)=(35\cdot9)/(35\cdot2)=(9)/(2) \\ 4(1)/(5)\cdot1(1)/(14)=(9)/(2) \end{gathered}

User Abraham Brookes
by
5.7k points