Given:
The mass of the first ball is,
![m_1=4\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/byp66ftkbm9y7gmily5cnubhyj134yntv3.png)
The initial velocity of the first ball towards West is,
![u_1=25\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/mr4bs02ghv5130zucdggdruh5iba022eb7.png)
The mass of thr second ball is,
![m_2=15\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/om09bp22nv3qf4roie5f0pady2wmp9ouid.png)
the second object is initially at rest.
The final velocity of the first ball is,
![v_1=-8.0\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/kxzfdmtvfskr8f2uo5jqo9g1wbsy261d8j.png)
we are taking West as positive.
Applying momentum conservation principle we can write,
![m_1u_1+m_2*0=m_1v_1+m_2v_2](https://img.qammunity.org/2023/formulas/physics/college/e7u7u0mh33xs3qa3koa6gcaz624ga0q1e6.png)
Substituting the values we get,
![\begin{gathered} 4*25+0=4*(-8.0)+15* v_2 \\ v_2=(100+32)/(15) \\ v_2=8.8\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/mrakn3l8msdvgbn04nthqrs1x4bixwd4wt.png)
THe final velocity of the second ball is towards East and the magnitude is 8.8 m/s.
The impulse of the Second ball is,
![\begin{gathered} I=m_2v_2-m_2*0 \\ =15*8.8 \\ =132\text{ kg.m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xnb2uk0iiyokqsvos8gymi1apfni7cnavp.png)