60.5k views
5 votes
The expression secθ - ((tan^2)(θ)/(sec)(θ)) simplifies to what expression?−tan θ−cot θcos θsec θ

The expression secθ - ((tan^2)(θ)/(sec)(θ)) simplifies to what expression?−tan θ−cot-example-1
User Ravaal
by
3.2k points

1 Answer

2 votes

Given the expression


sec(\theta)-(tan^2(\theta))/(sec(\theta))

express in sen and cos terms


(1)/(cos(\theta))-((sin^2(\theta))/(cos^2(\theta)))/((1)/(cos(\theta)))
(1)/(cos(\theta))-(sin^2(\theta))/(cos^(\theta))
(1-sin^2(\theta))/(cos^(\theta))
(cos^2(\theta))/(cos^(\theta))
cos^(\theta

then the correct answer is option C

Cos (angle)

User Shabby
by
3.4k points