The equation of a line in the slope intercept form is expressed as
y = mx + c
where
m = slope
c = y intercept
The formula for calculating slope is expressed as
m = (y2 - y1)/(x2 - x1)
where
x1 and y1 are the x and y coordinates of the initial point
x2 and y2 are the x and y coordinates of the final point
From the information given, the initial point is (- 2, - 4) and final point is (2, 8)
Thus,
x1 = - 2, y1 = - 4
x2 = 2, y2 = 8
By substituting these values into the slope formula,
m = (8 - - 4)/(2 - - 2) = (8 + 4)/(2 + 2) = 12/4 = 3
We would find the y intercept, c by substituting m = 3, x = - 2 and y = - 4 into the slope intercept equation. We have
- 4 = 3 * - 2 + c
- 4 = - 6 + c
Adding 6 to both sides of the equation,
- 4 + 6 = - 6 + 6 + c
c = 2
By substituting m = 3 and c = 2 into the slope intercept equation, the equation of the line is
C) y = 3x + 2