159k views
5 votes
What is the inverse function of y = (x-4)^2+2

User Mvl
by
3.3k points

1 Answer

3 votes

One way to find the inverse of a function is by first swapping x and y, then solving for y, like this:


\begin{gathered} y=(x-4)^2+2\text{ }\Rightarrow x=(y-4)^2+2 \\ \end{gathered}

Now, let's solve for y, like this:


\begin{gathered} x=(y-4)^2+2 \\ x-2=(y-4)^2+2-2 \\ (y-4)^2=x-2 \\ \sqrt[]{\mleft(y-4\mright)^2}=\sqrt[]{x-2} \\ y-4=\sqrt[]{x-2} \\ y-4+4=\sqrt[]{x-2}+4 \\ y=\sqrt[]{x-2}+4 \end{gathered}

Then, the inverse function of y = (x-4)^2+2​ is:


y=\sqrt[]{x-2}+4

User Peer Stritzinger
by
3.9k points