Consider the given function,
![f(x)=6e^x](https://img.qammunity.org/2023/formulas/mathematics/college/m87v01o7qwqtjz4ap9ne7n2y5ukvjvembw.png)
Solve for x=-3 as,
![\begin{gathered} f(-3)=6e^(-3) \\ f(-3)=6(0.049787) \\ f(-3)=0.2987 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kpeok9y2n537ue0sihw2wpbgs14fl4wsj7.png)
Thus, the value of f(-3) is 0.2987 approximately.
Solve for x=-1 as,
![\begin{gathered} f(-1)=6e^(-1) \\ f(-1)=6(0.367879) \\ f(-1)=2.2073 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tqz6b2vmnh1nykdq0927r86kis3g9xsmuz.png)
Thus, the value of f(-1) is 2.2073 approximately.
Solve for x=0 as,
![\begin{gathered} f(0)=6e^0 \\ f(0)=6(1) \\ f(0)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xct00wv3a800ishoazqwo72g7vw5lk2wn0.png)
Thus, the value of f(0) is 6 .
Solve for x=1 as,
![\begin{gathered} f(1)=6e^1 \\ f(1)=6(2.71828) \\ f(1)=16.3097 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/him9496o7fkl3eqwlreao2zyw6msemkcky.png)
Thus, the value of f(1) is 16.3097 approximately.
Solve for x=3 as,
![\begin{gathered} f(3)=6e^3 \\ f(3)=6(20.0855) \\ f(3)=120.5132 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mpkgr8cjrbw4nltfa4dc9vxo2f7v049526.png)
Thus, the value of f(3) is 120.5132 approximately.