We can write the equation of a parabola in two different ways:
The standard form:
![\begin{gathered} y=ax^2+bx+c \\ a\\e0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8709gvmxtc5sx700l1y3ywoqavam39gjd4.png)
And the vertex form:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
If the parabola has a minimum or a maximum depends on the leading coefficient (the coefficient of x²) or in both cases the coefficient a.
Let's see the cases:
![a>0_{\text{ }}(a_{\text{ }}is_{\text{ }}positive)](https://img.qammunity.org/2023/formulas/mathematics/college/tojta9xhxfocbzpu9ffyas0qksl0e3x67x.png)
If a is positive, the parabola opens upwards, so the parabola has a minimum.
![a<0_{\text{ }}(a_{\text{ }}is_{\text{ }}negative)](https://img.qammunity.org/2023/formulas/mathematics/college/7drgto0rd6xyrhcci6h20m88r24zz8w3wo.png)
If a is negative, the parabola opens downwards, so the parabola has a maximum