Given the triangle KLM, you can find the measure of angle L by using the Law of Sines. This states that:
![(sinA)/(a)=(sinB)/(b)=(sinC)/(c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cxhnvqvqy5sy7h8lmlmvxb5l54tcdv9mf1.png)
Where "a", "b" and "c" are sides of the triangle, and "A", "B", and "C" are the angles.
In this case, you can set up this equation:
![(sinK)/(k)=(sinL)/(l)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qxh1yza0kuuapajbbw699edqws4yesbahc.png)
Knowing that:
![\begin{gathered} m\angle K=22\text{\degree} \\ k=56 \\ l=26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ox6qw9wojahp8nze1tf6jii44nqwqa0lf6.png)
You can substitute values into the equation and solve for "L". Remember the use the Inverse Trigonometric Function Arcsine, in order to solve for the angle:
![(sin(22°))/(56)=(sinL)/(26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fyf1iljr60v4ozj6ahyflm4z3tmdnxqd72.png)
![(26\cdot sin(22°))/(56)=sinL](https://img.qammunity.org/2023/formulas/mathematics/high-school/g3ojbriftbu63bguwa2dm68wndekrpr3hz.png)
![sin^(-1)((26\cdot sin(22°))/(56))=L](https://img.qammunity.org/2023/formulas/mathematics/high-school/gx25uwlp4d2xfjh2hqu8ctuojtqlhwrljs.png)
![m\angle L\approx10°](https://img.qammunity.org/2023/formulas/mathematics/high-school/cnwq70a9zutimr8og59fie8yyxk0escihz.png)
Hence, the answer is:
![m\angle L\approx10°](https://img.qammunity.org/2023/formulas/mathematics/high-school/cnwq70a9zutimr8og59fie8yyxk0escihz.png)