171k views
3 votes
Triangle ABC has vertices at A(−4, 3), B(0, 5), and C(−2, 0). Determine the coordinates of the vertices for the image if the preimage is translated 4 units down. A′(−4, −1), B′(0, 1), C′(−2, −4) A′(−4, 7), B′(0, 9), C′(−2, 4) A′(0, 3), B′(4, 4), C′(3, 0) A′(−8, 7), B′(−4, 9), C′(−6, 4)

1 Answer

4 votes

Given:

The triangle is ABC

Vertices of ABC is


\begin{gathered} A=(-4,3) \\ \\ B=(0,5) \\ \\ C=(-2,0) \end{gathered}

Find-:

The vertex after 4 units down

Explanation-:

The triangle is down, which means changing the coordinates of the y-axis

The y axis reduce by 4 units, then coordinates is


\begin{gathered} A=(-4,3) \\ \\ A\rightarrow A^(\prime) \\ \\ A^(\prime)=(-4,(3-4)) \\ \\ A^(\prime)=(-4,-1) \end{gathered}

The B' is


\begin{gathered} B=(0,5) \\ \\ B^(\prime)=(0,(5-4)) \\ \\ B^(\prime)=(0,1) \end{gathered}

The C' is


\begin{gathered} C^(\prime)=(-2,(0-4)) \\ \\ C^(\prime)=(-2,-4) \end{gathered}

So, the new coordinates are


\begin{gathered} A^(\prime)(-4,-1) \\ \\ B^(\prime)(0,1) \\ \\ C^(\prime)(-2,-4) \end{gathered}

User Sandro Machado
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.