Part A.
Given:
P = (5, 4), Q = (7, 3), R = (8, 6), S = (4, 1)
Let's find the component of the vector PQ + 5RS.
To find the component of the vector, we have:
![=\lparen Q_1-P_1,Q_2-P_2)=<7-5,3-4>](https://img.qammunity.org/2023/formulas/mathematics/college/tzj751ot4j7z5a6nzerf1856tntqjmiw48.png)
For vector RS, we have:
![=\lparen S_1-R_1,S_2-R_2)=<4-8,1-6>](https://img.qammunity.org/2023/formulas/mathematics/college/va4u3y2qzk8rd0c9prx1k3vn2agsk1i1k9.png)
Hence, to find the vector PQ+5RS, we have:
![\begin{gathered} =<7-5,3-4>+5<4-8,1-6> \\ \\ =\left(2,-1\right)+5\left(-4,-5\right) \\ \\ =\left(2,-1\right)+\left(5\ast-4,5\ast-5\right) \\ \\ =\left(2,-1\right)+\left(-20,-25\right) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lpu8ysabi6twti2verq7evfqce7byuam2c.png)
Solving further:
![\begin{gathered} =<2-20,-1-25> \\ \\ =<-18,-26> \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/43pjvnrthlzwdhbrefm5aa64t372xpa3vg.png)
Therefoee, the component of the vector PQ+5RS is:
<-18, -26>
• Part B.
Let's find the magnitude of the vector PQ+5RS.
To find the magnitude, apply the formula:
![m=√(\left(x^2+y^2\right?)](https://img.qammunity.org/2023/formulas/mathematics/college/a810m5tc5uey3ua9yhjktkcgkpjist3t2b.png)
Thus, we have:
![\begin{gathered} m=√(\left(-18^2+-26^2\right?) \\ \\ m=√(324+676) \\ \\ m=√(1000) \\ \\ m=√(10\ast10^2) \\ \\ m=10√(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rzvln4cmxgkizh4fr8ck1pdtasf2gxmpsy.png)
Therefore, the magnitude of the vector is:
![10√(10)](https://img.qammunity.org/2023/formulas/mathematics/college/7r5qiezq9qzh3p68qzivk6hwntp6tjbeeb.png)
ANSWER:
Part A. <-18, -26>
Part B. 10√10