216k views
3 votes
Suppose theta is an angle in the standard position whose terminal side is in quadrant 1 and sin theta = 84/85. find the exact values of the five remaining trigonometric functions of theta

User Rotsen
by
4.9k points

1 Answer

5 votes

we know that

The angle theta lies in the I quadrant


sin\theta=(84)/(85)

step 1

Find out the value of the cosine of angle theta

Remember that


sin^2\theta+cos^2\theta=1

substitute given value


\begin{gathered} ((84)/(85))^2+cos^2\theta=1 \\ \\ cos^2\theta=1-(7,056)/(7,225) \\ \\ cos^2\theta=(169)/(7,225) \\ \\ cos\theta=(13)/(85) \end{gathered}

step 2

Find out the value of the tangent of angle theta


tan\theta=(sin\theta)/(cos\theta)

substitute given values


\begin{gathered} tan\theta=((13)/(85))/((84)/(85))=(13)/(84) \\ therefore \\ tan\theta=(13)/(84) \end{gathered}

step 3

Find out the cotangent of angle theta


cot\theta=(1)/(tan\theta)

therefore


cot\theta=(84)/(13)

step 4

Find out the value of secant of angle theta


sec\theta=(1)/(cos\theta)

therefore


sec\theta=(85)/(13)

step 5

Find out the value of cosecant of angle theta


csc\theta=(1)/(sin\theta)

therefore


csc\theta=(85)/(84)

User Eslam Tahoon
by
4.1k points