161k views
0 votes
Find the indicated function given f(x)=2x^2+1 and g(x)=3x-5. When typing your answer if you have an exponent then use the carrot key ^ by pressing SHIFT and 6. Type your simplified answers in descending powers of x an do not include any spaces between your characters.f(g(2))=Answerf(g(x))=Answerg(f(x))=Answer (g \circ g)(x) =Answer (f \circ f)(-2) =Answer

Find the indicated function given f(x)=2x^2+1 and g(x)=3x-5. When typing your answer-example-1
User Erre Efe
by
4.2k points

1 Answer

4 votes

Given the functions


\begin{gathered} f(x)=2x^2+1 \\ g(x)=3x-5 \end{gathered}

1) To find f(g(2))


\begin{gathered} f(g(x))=2(3x-5)^2+1 \\ f(g(x))=2(9x^2-15x-15x+25)+1=2(9x^2-30x+25)+1 \\ f(g(x))=18x^2-60x+50+1=18x^2-60x+51 \\ f(g(2))=18(2)^2-60(2)+51=18(4)-120+51 \\ f(g(2))=72-120+51=3 \\ f(g(2))=3 \end{gathered}

Hence, f(g(2)) = 3

2) To find f(g(x))


\begin{gathered} f(g(x))=2(3x-5)^2+1 \\ f(g(x))=2(9x^2-15x-15x+25)+1=2(9x^2-30x+25)+1 \\ f(g(x))=18x^2-60x+50+1=18x^2-60x+51 \\ f(g(x))=18x^2-60x+51 \end{gathered}

Hence, f(g(x)) = 18x²-60x+51

3) To find g(f(x))


\begin{gathered} g(f(x))=3(2x^2+1)-5 \\ g(f(x))=6x^2+3-5=6x^2-2 \\ g(f(x))=6x^2-2 \end{gathered}

Hence, g(f(x)) = 6x²-2

4) To find (gog)(x)


\begin{gathered} (g\circ g)(x)=3(3x-5)-5=9x-15-5=9x-20 \\ (g\circ g)(x)=9x-20 \end{gathered}

User Suelee
by
4.1k points