74.1k views
1 vote
Number 6. For questions 5-7, (a) use synthetic division to show that x is a zero.(b) find the remaining factors of f(x).(c) use your results to find the complete factorization of f(x).(d) list all zeros of f(x).(e) graph the function.

Number 6. For questions 5-7, (a) use synthetic division to show that x is a zero.(b-example-1
User Sthita
by
4.5k points

1 Answer

4 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given polynomials


f(x)=x^3+6x^2-15x-100

One of the zeroes is:


\begin{gathered} x=-5 \\ \text{this implies that:} \\ (x+5)=0 \end{gathered}

STEP 2: Use synthetic division to divide the polynomials


(x^3+6x^2-15x-100)/(x+5)

Write the coefficients of the numerator


1\:\:6\:\:-15\:\:-100
\begin{gathered} \mathrm{Write\:the\:problem\:in\:synthetic\:division\:format} \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \\ Carry\:down\:the\:leading\:coefficient,\:unchanged,\:to\:below\:the\:division\: \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \\ \end{gathered}
\begin{gathered} Multiply\:the\:carry-down\:value\:by\:the\:zero\:of\:the\:denominator,\:and\:carry\:the\:result\:up\:into\:the\:next\:column \\ 1\left(-5\right)=-5 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \end{gathered}
\begin{gathered} \mathrm{Add\:down\:the\:column:} \\ 6-5=1 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \end{gathered}
\begin{gathered} Multiply\:the\:carry-down\:value\:by\:the\:zero\:of\:the\:denominator,\:and\:carry\:the\:result\:up\:into\:the\:next\:column: \\ 1\left(-5\right)=-5 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \end{gathered}
\begin{gathered} \mathrm{Add\:down\:the\:column:} \\ -15-5=-20 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:-20\:\:\:\:\:\:}\end{matrix} \end{gathered}
\begin{gathered} Multiply\:the\:carry-down\:value\:by\:the\:zero\:of\:the\:denominator,\:and\:carry\:the\:result\:up\:into\:the\:next\:column: \\ \left(-20\right)\left(-5\right)=100 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:100}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:-20\:\:\:\:\:\:}\end{matrix} \end{gathered}
\begin{gathered} \mathrm{Add\:down\:the\:column:} \\ -100+100=0 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:100}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:-20\:\:\:\:\:0}\end{matrix} \end{gathered}
\begin{gathered} \mathrm{The\:last\:carry-down\:value\:is\:the\:remainder} \\ 0 \end{gathered}

The last carry-down value is the remainder and it is 0 (zero)

Since the remainder is a zero, hence, x=-5 is a zero

Step 3: Answer question b

To get the factors, the remainder of the division in step 2 is given as:

The remaining factors of f(x) is:


x^2+x-20

STEP 4: Answer Question c


\begin{gathered} roots=(x+5)(x^2+x-20) \\ Factorize\text{ the other root to have:} \\ Using\text{ factorization methods:} \\ (x^2+x-20)=(x^2+5x-4x-20) \\ x(x+5)-4(x+5)=0 \\ (x-4)(x+5)=0 \end{gathered}

The complete factorization will give:


(x+5)(x-4)(x+5)

STEP 5: Answer question d

The zeroes of f(x) will be:


\begin{gathered} zeroes\text{ of f\lparen x\rparen=?, we equate the roots to 0} \\ zeroes\Rightarrow x=-5,4,-5 \end{gathered}

zeroes are: -5,4,-5

STEP 6: Plot the graph

Number 6. For questions 5-7, (a) use synthetic division to show that x is a zero.(b-example-1
User Telotortium
by
4.5k points