179k views
2 votes
Evaluate the function for the indicated values of x. (2x + 1, x 5 f(-10) = F(2) = f(-5) = f(-1) = f(8) =

Evaluate the function for the indicated values of x. (2x + 1, x 5 f(-10) = F(2) = f-example-1
User Manna
by
8.0k points

1 Answer

1 vote

\begin{gathered} f(-10)=-19 \\ f(2)=4 \\ f(-5)=-9 \\ f(-1)=1 \\ f(8)=-5 \end{gathered}

Step-by-step explanation


f(x)f(x)=\mleft\{\begin{aligned}2x+1\text{ if x}\leq-5\text{ } \\ x^2\text{ if -5}Step 1<p>you need to select the correct function depending on the number</p><p></p><p>i)f(-10)</p>[tex]-10\leq-5,\text{ then you n}eed\text{ apply}\Rightarrow f(x)=2x+1

Let x= -10, replacing


\begin{gathered} f(x)=2x+1 \\ f(-10)=(2\cdot-10)+1 \\ f(-10)=-20+1 \\ f(-10)=-19 \end{gathered}

Step 2

Now

ii) f(2)


\begin{gathered} 2\text{ is in the interval} \\ -5Let<p>x=2,replacing</p>[tex]\begin{gathered} f(x)=x^2 \\ f(2)=2^2=4 \\ f(2)=4 \end{gathered}

Step 3

iii) f(-5)


\begin{gathered} -5\text{ is smaller or equal than -5} \\ -5\leq5,\text{ then apply}\Rightarrow f(x)=2x+1 \end{gathered}

Let

x=-5,replace


\begin{gathered} f(x)=2x+1 \\ f(-5)=(2\cdot-5)+1=-10+1 \\ f(-5)=-9 \end{gathered}

Step 4

iv)f(-1)


\begin{gathered} -1\text{ is in the interval} \\ -5<-1<5 \\ \text{then apply}\Rightarrow f(x)=x^2 \end{gathered}

let

x=-1,replace


\begin{gathered} f(x)=x^2 \\ f(-1)=(-1)^2 \\ f(-1)=-1\cdot-1=1 \\ f(-1)=1 \end{gathered}

Step 5

Finally

F(8)


\begin{gathered} 8\text{ is greater or equal than 5, then apply} \\ 8\ge5\Rightarrow apply\text{ f(x)=3-x} \\ f(x)=3-x \end{gathered}

Let

x=8,replace


\begin{gathered} f(x)=3-x \\ f(8)=3-8 \\ f(8)=-5 \end{gathered}

I hope this helps you

User Jim Barrows
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories