Answer:
x = 8
Explanations
From the line geometry shown, the line a and b are parallel lines while line "t" is the transversal.
Since the horizontal lines are parallel, hence;
![\angle4=\angle6(alternate\text{ exterior angle})](https://img.qammunity.org/2023/formulas/mathematics/college/hcts4iibhtq9y9x9hmye2el3pdnm540xfc.png)
Given the following parameters
![\begin{gathered} \angle4=4x-2 \\ \angle6=2x+14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6q1evw2fv1swil7ube9ng2un5y60c1pzhu.png)
Equate both expressions to have:
![\begin{gathered} 4x-2=2x+14 \\ 4x-2x=14+2 \\ 2x=16 \\ x=(16)/(2) \\ x=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2eh07g4ejmuo1spm2ip1iv7wf1qr458dsa.png)
Hence the value of x is 8