Answer:
The three correct corresponding pairs that gives the same area are;
![\begin{gathered} A=(1)/(2)*10*3.5=17.5cm^2 \\ A=(1)/(2)*5*7=17.5cm^2 \\ A=(1)/(2)*14*2.5=17.5cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u9hbho8b8zmrptfazzsc0mr2rbni0ce938.png)
The areas are the same in each case because the product of each pair is the same.
Step-by-step explanation:
Given the base and height pairs in the question.
Let us use the corresponding pairs that gives the same area.
Firstly, for the first pair;
![\begin{gathered} A=(1)/(2)*10*3.5=17.5cm^2 \\ A=(1)/(2)*10*7=35cm^2 \\ A=(1)/(2)*10*2.5=12.5cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wl8kmxm76mq3ow3caoylldg9aiekbx8k5b.png)
Secondly, the second pair is;
![\begin{gathered} A=(1)/(2)*5*7=17.5cm^2 \\ A=(1)/(2)*5*3.5=8.75cm^2 \\ A=(1)/(2)*5*2.5=6.25cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fdrviye3fqtuj3fybjoq1y30nxzxd2vhiq.png)
Thirdly, the third pair;
![\begin{gathered} A=(1)/(2)*14*3.5=24.5cm^2 \\ A=(1)/(2)*14*7=49cm^2 \\ A=(1)/(2)*14*2.5=17.5cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6tnz4to6upn6txkv02z00zl9prei366970.png)
Therefore, the three correct corresponding pairs that gives the same area are;
![\begin{gathered} A=(1)/(2)*10*3.5=17.5cm^2 \\ A=(1)/(2)*5*7=17.5cm^2 \\ A=(1)/(2)*14*2.5=17.5cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u9hbho8b8zmrptfazzsc0mr2rbni0ce938.png)
The areas are the same in each case because the product of each pair is the same.