SOLUTION
The terms below make an A.P. Now we are told to find the sum of the AP.
Sum of an AP is given by
![S\text{ = }(n)/(2)\lbrack2a\text{ + (n-1)d\rbrack}](https://img.qammunity.org/2023/formulas/mathematics/college/v5m0g5f2vxxladu4q1b74oqlhwlw6xlz9w.png)
Where S = sum of the AP, a = first term = 9, d = -5, n= ?
So we have to find n first before we can find the sum. The nth term which is the last term = -536. So we will use it to find the number of terms "n"
![\begin{gathered} \text{From T}_{n\text{ }}=\text{ a +(n-1)d where T}_{n\text{ }}=\text{ -536} \\ -536\text{ = 9+(n-1)-5} \\ -536\text{ = 9-5n+5} \\ -536\text{ = 14-5n} \\ -5n\text{ = -536-14} \\ -5n\text{ = -550} \\ n\text{ = 110} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/25rajcmdj3nt1ls6ld5zp15em4mlk30l5v.png)
Now let's find the sum
![\begin{gathered} S\text{ = }(n)/(2)\lbrack2a\text{ + (n-1)d\rbrack} \\ S\text{ = }(110)/(2)\lbrack2*9\text{ + (110-1)-5\rbrack} \\ S\text{ = 55\lbrack{}18+(119)-5\rbrack} \\ S\text{ = 55\lbrack{}18 - 595\rbrack} \\ S\text{ = 55}*-577 \\ S\text{ = -31735} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/12rny41jczuecp2x32ujsu44z7i10rxst2.png)
Therefore, the sum = -31735