178k views
0 votes
Simplify by writing the expression with positive exponents. Assume that all variables represent nonzero real numbers

Simplify by writing the expression with positive exponents. Assume that all variables-example-1

1 Answer

3 votes


\lbrack(144q^2)/(m^6p^4)\rbrack^{}

Step-by-step explanation

Let's remember some properties ofthe fractions ans exponents,


\begin{gathered} a^(-n)=(1)/(a^n) \\ ((a)/(b))^n=(a^n)/(b^n) \\ (ab)^n=a^nb^n \\ (a^n)^m=a^(m\cdot n) \end{gathered}

so

Step 1


\lbrack(4p^(-2)q)/(3^(-1)m^3)\rbrack^2

reduce by using the properties


\begin{gathered} \lbrack(4p^(-2)q)/(3^(-1)m^3)\rbrack^2 \\ \lbrack(4q)/(3^(-1)m^3p^2)\rbrack^2 \\ \lbrack(3^1\cdot4q)/(m^3p^2)\rbrack^2 \\ \lbrack(12q)/(m^3p^2)\rbrack^2 \\ \lbrack(144q^2)/(m^(3\cdot2)p^(2\cdot2))\rbrack^{} \\ \lbrack(144q^2)/(m^6p^4)\rbrack^{} \end{gathered}

therefore, the answer is


\lbrack(144q^2)/(m^6p^4)\rbrack^{}

I hope this helps you

User Timonsku
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories