178k views
0 votes
Simplify by writing the expression with positive exponents. Assume that all variables represent nonzero real numbers

Simplify by writing the expression with positive exponents. Assume that all variables-example-1

1 Answer

3 votes


\lbrack(144q^2)/(m^6p^4)\rbrack^{}

Step-by-step explanation

Let's remember some properties ofthe fractions ans exponents,


\begin{gathered} a^(-n)=(1)/(a^n) \\ ((a)/(b))^n=(a^n)/(b^n) \\ (ab)^n=a^nb^n \\ (a^n)^m=a^(m\cdot n) \end{gathered}

so

Step 1


\lbrack(4p^(-2)q)/(3^(-1)m^3)\rbrack^2

reduce by using the properties


\begin{gathered} \lbrack(4p^(-2)q)/(3^(-1)m^3)\rbrack^2 \\ \lbrack(4q)/(3^(-1)m^3p^2)\rbrack^2 \\ \lbrack(3^1\cdot4q)/(m^3p^2)\rbrack^2 \\ \lbrack(12q)/(m^3p^2)\rbrack^2 \\ \lbrack(144q^2)/(m^(3\cdot2)p^(2\cdot2))\rbrack^{} \\ \lbrack(144q^2)/(m^6p^4)\rbrack^{} \end{gathered}

therefore, the answer is


\lbrack(144q^2)/(m^6p^4)\rbrack^{}

I hope this helps you

User Timonsku
by
5.7k points