Step-by-step explanation
Given the sample below, we are asked to find the mean and the standard deviation.
Part A
We can find the mean below using the formula
![\begin{gathered} \text{Mean}=\frac{\sum ^{}_{}x}{n} \\ \text{where x is the sample value and n is the sample size} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kthg2ewrfjlixik1iyd3qb68iujd07e8cu.png)
Therefore,
![\text{Mean }=(79.8)/(20)=3.99](https://img.qammunity.org/2023/formulas/mathematics/college/frrm03xysbs1emaogxhutdiv0s7sjvzp4u.png)
Answer =3.99
Part B
The standard deviation of the sample size can be found using the formula below;
![\begin{gathered} S.D=\sqrt[]{\sum ^{}_{}\frac{(x-\bar{x})^2}{N-1}} \\ =\sqrt[]{(20.938)/(19)} \\ =\sqrt[]{1.102} \\ =1.05 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zq0ab5p2rh88vczegduyu2vtcky3pdnsjd.png)
Answer: 1.05