208k views
2 votes
You are designing a poster with an area of 625 cm2 to contain a printing area in the middle and have the margins of 4cm at the top and bottom and 7cm on each side. Find the largest possible printing area. Round your answer to the nearest four decimal places.

1 Answer

2 votes

Step-by-step explanation

Step 1

diagram

so

Step 2

let

a)total area= side1*side 2


side1*side2=625

and


printing\text{ area=\lparen side1-14\rparen\lparen side2-8\rparen}

Step 3

solve

let


\begin{gathered} side1\text{ = x} \\ side\text{ 2 =}y \\ xy=625 \\ y=(625)/(x)\Rightarrow equation(1) \end{gathered}

and in teh second equation we have


\begin{gathered} pr\imaginaryI nt\imaginaryI ng\text{area=}\operatorname{\lparen}\text{s}\imaginaryI\text{de*1-14}\operatorname{\rparen}\operatorname{\lparen}\text{s}\imaginaryI\text{de*2-8}\operatorname{\rparen} \\ A=(x-14)(y-8) \\ replace\text{ the y value} \\ A=(x-14)((625)/(x)-8) \\ A=(625x)/(x)-(8750)/(x)-8x+112) \\ A=-(8750)/(x)+625-8x+112 \\ dA=(8750)/(x^2)-8 \\ (8750)/(x^2)=8 \\ x^2=(8750)/(8) \\ x=\sqrt[\placeholder{⬚}]{(8750)/(8)} \\ x=33 \end{gathered}

replace to find y


\begin{gathered} y=(625)/(x)\operatorname{\Rightarrow}equat\imaginaryI on(1) \\ y=(625)/(33) \\ y=18.9 \end{gathered}

so

the maximum area is


\begin{gathered} x-14=33-14=19 \\ y-8=18.9=10.9 \end{gathered}

so, the greates area is


18.9*19=359.1

therefore, the answer is

359.1 square cm

I hope this helps you

You are designing a poster with an area of 625 cm2 to contain a printing area in the-example-1
User Doolan
by
8.0k points