Answer:
(-3, 2)
Explanation:
Given the system of inequalities:
![\begin{gathered} y\ge3x-6 \\ y<-2x-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wx3h6qd7su92tqz2a2dz0cgdejmo7bipcc.png)
To solve the inequalities graphically, follow the steps below:
Inequality 1
First, find the equation of the boundary line.
![y=3x-6](https://img.qammunity.org/2023/formulas/mathematics/college/3bfx64bxsnp3v4icitmuw2192ciligpq3q.png)
Next, determine the intercepts to draw the boundary line.
![\begin{gathered} \text{When }x=0,y=3(0)-6=-6\implies(0,-6) \\ \text{When y}=0,0=3x-6\implies3x=6\implies x=2\implies(2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o1g6lze7bq97oo0ov8rhc0gfzrvkhypi79.png)
Join the points (0,-6) and (2,0) using a solid line.
Finally, determine the required half-plane using the origin test.
![\begin{gathered} At\text{ (0,0)} \\ y\ge3x-6\implies0\ge-6(T\text{rue)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xqzr8wukjfy3xwy572b68l9v8v6kd25bml.png)
The side that contains the point (0,0) is the required half-plane.
The graph showing the first inequality is given below:
Inequality 2
First, find the equation of the boundary line.
![y=-2x-1](https://img.qammunity.org/2023/formulas/mathematics/college/i7bcvc1vr6bdqthckrpkawv2gvt9ifqrtd.png)
Next, determine the intercepts to draw the boundary line.
![\begin{gathered} \text{When }x=0,y=-2(0)-1=-1\implies(0,-1) \\ \text{When y}=0,0=-2x-1\implies-2x=1\implies x=-0.5\implies(-0.5,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tycsmajcpk1xaea3b6kuyj7vflb8rn7qwd.png)
Join the points (0,-1) and (-0.5,0) using a broken line.
Finally, determine the required half-plane using the origin test.
![\begin{gathered} At\text{ (0,0)} \\ y<2x-1\implies0<-1(False\text{)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ml7cyqzjdjhgcag8ujdpa010epgyltq0ic.png)
The side that DOES NOT contain the point (0,0) is the required half-plane.
The graph of the system of inequalities is given below:
A point in the solution set is (-3, 2).