492,781 views
18 votes
18 votes
Given f(x) =
(1)/(x-5) and g(x)=
√(x-2) Find (f o g) (x) and write the domain of (fog) (x) in interval form. can someone solve this step by step

User JLundell
by
2.8k points

1 Answer

12 votes
12 votes

Answer:


f(g(x)) =(1)/(√(x - 2) - 5)


D(f(g(x)) = (2;27) \cup (27; +\infty)

Explanation:


f(x) = (1)/(x - 5)


g(x) = √(x - 2)


f(g(x)) = (1)/(g(x) - 5) = (1)/(√(x - 2) - 5)


D(f(g(x)):


\displaystyle \left \{ {{x - 2 > 0} \atop { √(x - 2) - 5 \\eq 0 }} \right.
\displaystyle \left \{ {{x > 2} \atop { √(x - 2) \\eq 5 }} \right
\displaystyle \left \{ {{x > 2} \atop { (√(x - 2))^(2) \\eq 5^(2) }} \right
\displaystyle \left \{ {{x > 2} \atop { x - 2 \\eq 25 }} \right
\displaystyle \left \{ {{x > 2} \atop { x \\eq 27 }} \right


D(f(g(x)) = (2;27) \cup (27; +\infty)

Given f(x) = (1)/(x-5) and g(x)= √(x-2) Find (f o g) (x) and write the domain of (fog-example-1
User Opux
by
3.2k points