108k views
4 votes
At a local restaurant, the amount of time that customers have to wait for their food isnormally distributed with a mean of 12 minutes and a standard deviation of 2minutes. Using the empirical rule, determine the interval of minutes that the middle99.7% of customers have to wait.

At a local restaurant, the amount of time that customers have to wait for their food-example-1

1 Answer

7 votes

By the empirical rule 99.7% of the customers fall within the interval bounded by


\bar{x}-3\sigma\text{ and }\bar{x}+3\sigma

In this case,


\begin{gathered} \bar{x}=12\min \text{ and} \\ \sigma=2\min \end{gathered}

Therefore,


\begin{gathered} \bar{x}-3\sigma=12-3(2)=12-6=6\min s \\ \bar{x}+3\sigma=12+3(2)=12+6=18\min s \end{gathered}

Hence, the interval of minutes that the middle 99.7% of customers have to wait is given by

(6mins, 18mins)

User NathanAldenSr
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.