187k views
5 votes
Hello can you help me with this math question and this a homework assignment

Hello can you help me with this math question and this a homework assignment-example-1
User Cute Panda
by
3.6k points

1 Answer

1 vote

We know that two vectors are ortogonal if and only if:


\vec{v}\cdot\vec{w}=0

where


\vec{v}\cdot\vec{w}=v_1w_1+v_2w_2

is the dot product between the vectors.

In this case we have the vectors:


\begin{gathered} \vec{a}=\langle-4,-3\rangle \\ \vec{b}=\langle-1,k\rangle \end{gathered}

the dot product between them is:


\begin{gathered} \vec{a}\cdot\vec{b}=(-4)(-1)+(-3)(k) \\ =4-3k \end{gathered}

and we want them to be ortogonal, so we equate the dot product to zero and solve the equation for k:


\begin{gathered} 4-3k=0 \\ 4=3k \\ k=(4)/(3) \end{gathered}

Therefore, for the two vector to be ortogonal k has to be 4/3.

User Amaal
by
3.7k points