73.7k views
1 vote
A collection of dimes and quarters has a value of $1.35. List all possible combinations of dimes and quarters. Remember to write a let statement

1 Answer

4 votes

3 combinations:

3 quarters and 6 dimes

5 quarters and 1 dime

1 quarter and 11 dimes

1) Remember that a dime corresponds to $0.10 and a quarter to $0.25. And the value we want to find is $1.35

2) As we can see the last digit on $1.35 is 5 then we can infer that we're going to need an odd number of quarters ($0.25). Also, notice that we need whole numbers for the quantities of each coin. In other words, multiples of 0.10 and 0.25 whose sum yields to $1.35. So let's do it step by step:

So, we can write out the following list of combinations:

q (quarter) 3 q = 3 x 0.25 = $ 0.75

d (dimes) 6 d = 6 x 0.10 = $ 0.60

0.60 + 0.75 = 1.35

2.2) Another possible combination:

q (quarter) 5 q = 5 x 0.25 = $ 1.25

d (dimes) 1 d = 1 x 0.10 = $ 0.10

0.10+1.25= 1.35

2.3)

q (quarter) 1 q = 1 x 0.25 = $ 0.25

d (dimes) 11 d = 11x 0.10 = $ 1.10

0.25+1.10 = 1.35

3) Hence, considering that we need to combine dimes and quarters and their sum must be lesser than $1.35 We have three combinations with whole numbers of dimes and quarters:

3 quarters and 6 dimes

5 quarters and 1 dime

1 quarter and 11 dimes

User Alessandro Carughi
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.