The first thing we have to identify in our problem are the variables
![\begin{gathered} x\to\text{time} \\ y\to\text{CPI} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bznwwz33gkin0n1x5ycfgckhftttb96ihs.png)
Now we see the points (x,y) that gives us the problem
![\begin{gathered} 2011\to(11,202.9) \\ 2016\to(16,233.2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f3rkotxz8ewjohalor33np2m55jtp2lf6j.png)
Since behavior can be modeled by a straight line, we use the general equation of the straight line
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Where m is the slope of the line and b is the y-intercept.
Taking this into account and with the 2 points that they give us, we proceed to calculate the equation of the line starting with the slope:
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ m=(233.2-202.9)/(16-11) \\ m=(30.3)/(5) \\ m=6.06 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jejua18r26agwucxphnrjc39lbw527z5ku.png)
![\begin{gathered} y=6.06x+b \\ 202.9=6.06(11)+b \\ b=202.9-66.66 \\ b=136.24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/clvk9m3jbbwx8vas3wew6ujzhtc2e126m5.png)
The equation that models the behavior of the CPI is
![y=6.06x+136.24](https://img.qammunity.org/2023/formulas/mathematics/college/14n0vexs7otsimhm1rxubtsrzjqyo9rlmw.png)
Now we calculate the CPI values for the years 2013 and 2014
![\begin{gathered} 2013\to x=13 \\ y=6.06(13)+136.24 \\ y=78.78+136.24 \\ y=215.02 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zv8q3iqhuohwmwy0p2ror3ir8ehna8hrvc.png)
![\begin{gathered} 2014\to x=14 \\ y=6.06(14)+136.24 \\ y=84.84+136.24 \\ y=221.08 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mn8l7mjwn0epv2n1ni3d2nf3vk17ksnfig.png)