Consider that you have a population greater than 30, then, you can use the normal distribution to determine the margin of error.
Use the following formula:
![\bar{x}\pm Z_{(\alpha)/(2)}\frac{s}{\sqrt[]{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/kawhrcqk9nr8vttk8i1xf3yh8zd6nbrsxr.png)
where:
x: mean = 33
s: standard deviation = 2
n = 31
Z: z-value for 98%
The value of Z can be found on a table for the normal distribution. For a margin of error at 98%, you get for Z:
Z = 2.326
Replace the previous values of the parameters into the formula for the margin of error (confidence interval):
![\begin{gathered} 33\pm(2.326)\frac{2}{\sqrt[]{31}}= \\ 33\pm0.83 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aa1jy5ylaxlonp9g419i553t6svfakp9tl.png)
Then, the margin of error is:
(33.00 - 0.83 , 33.00 + 0.83) = (32.17 , 33.83)