Given:
The trigonometric ratio is given as,

The value of θ lies in the second quadrant.
The objective is to find the value of sinθ.
Step-by-step explanation:
The formula of cotθ is,

Since, the value of θ lies in second quadrant, the triangle formed for cotθ will be,
Then, the value of x can be calculated as,
![\begin{gathered} x^2=2^2+(-1)^2 \\ x=\sqrt[]{4+1} \\ x=\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/swdfcmmwydlzg5ofujqlmsyno5z4xiighc.png)
To find the value of sinθ:
The value of sinθ can be calculated as,
![\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin \theta=\frac{2}{\sqrt[]{5}} \\ \sin \theta=\frac{2}{\sqrt[]{5}}*\frac{\sqrt[]{5}}{\sqrt[]{5}} \\ \sin \theta=\frac{2\sqrt[]{5}}{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hwjm1ywf92tgnhtz9dn7tqabk7pv2b9ei9.png)
Hence, the value of sinθ is (2√5)/5.