2.0k views
2 votes
Solve the system of equations below using any method you learned in this unit. Show all work (even if you are using your calculator).

Solve the system of equations below using any method you learned in this unit. Show-example-1
User Daniel Sp
by
4.6k points

1 Answer

4 votes

Given the system of equations


\begin{gathered} x+4y-z=20-----1 \\ 3x+2y+z=8-----2 \\ 2x-3y+2z=-16-----3 \end{gathered}

We can solve for x, y and z below.

Step-by-step explanation

Step 1: Find the value of z using the substitution method


\begin{gathered} \begin{bmatrix}x+4y-z=20\\ 3x+2y+z=8\\ 2x-3y+2z=-16\end{bmatrix} \\ Isolate\text{ for x in equation 1} \\ x=20-4y+z \\ \mathrm{Substitute\:}x=20-4y+z\text{ in equation 2 and 3} \\ \begin{bmatrix}3\left(20-4y+z\right)+2y+z=8\\ 2\left(20-4y+z\right)-3y+2z=-16\end{bmatrix} \\ sinplify \\ \begin{bmatrix}-10y+4z+60=8 \\ -11y+4z+40=-16\end{bmatrix} \\ Isolate\text{ for y in}-10y+4z+60=8 \\ -10y=8-4z-60 \\ y=(8-4z-60)/(-10) \\ y=(-4z-52)/(-10) \\ y=(2\left(z+13\right))/(5) \\ \mathrm{Substitute\:}y=(2\left(z+13\right))/(5)\text{ in }-11y+4z+40=-16 \\ \begin{bmatrix}-11\cdot (2\left(z+13\right))/(5)+4z+40=-16\end{bmatrix} \\ simplify \\ \begin{bmatrix}(-2z-286)/(5)+40=-16\end{bmatrix} \\ multiply\text{ through by 5} \\ -2z-286+200=-80 \\ isolate\text{ for z} \\ -2z=-80-200+286 \\ -2z=6 \\ z=(6)/(-2) \\ z=-3 \end{gathered}

Step 2: Find y


\begin{gathered} \mathrm{Substitute\:}z=-3\text{ in}\mathrm{\:}y=(2\left(z+13\right))/(5) \\ y=(2(-3+13))/(5) \\ y=(2(10))/(5) \\ y=4 \end{gathered}

Step 3: Find z


\begin{gathered} \mathrm{Substitute\:}z=-3,\:y=4\text{ in }x=20-4y+z \\ x=20-4\cdot \:4-3 \\ x=1 \end{gathered}

Answer: The solutions to the system of equations are


x=1,\:z=-3,\:y=4

User Mejobloggs
by
4.1k points