Answer:
3 years
Explanations:
The given function representing the population of alligators is:
![P(t)\text{ = (}319)2^{(t)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/19qq12fo314gbjpdwj8vrxh6qr1d7gr8ea.png)
Find the intial population at t = 0
![\begin{gathered} P(0)\text{ = 319 }*2^0 \\ P(0)\text{ = 319 }*\text{ 1} \\ P(0)\text{ }=\text{ 319} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jhdxx9weyf7y6ewosby4gh9n3bqu3ch3wd.png)
The population will double when:
P(t) = 319 x 2
P(t) = 638
The doubling time is the value of t at which P(t) = 638
![\begin{gathered} P(t)\text{ = 319 }*2^{(t)/(3)} \\ 638\text{ = 319 }*2^{(t)/(3)} \\ (638)/(319)=2^{(t)/(3)} \\ 2\text{ }=2^{(t)/(3)} \\ 2^1=2^{(t)/(3)} \\ 1\text{ = }(t)/(3) \\ t\text{ = 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nhsnu8m2mee6qpeyjt4tjjn55r8uqgp2h0.png)
The population will double after 3 years.
Therefore, the doubling-time for this population of alligators is 3 years