SOLUTION:
Step 1:
In this question, we are given the following:
A circular pool measures 12 feet across.
One cubic yard of concrete is to be used to create a circular border of uniform width around the pool.
If the border is to have a depth of 6 inches, how wide will the border be?
Step 2:
From the question, we can see that:
![6\text{ inches = 0. 5 feet}](https://img.qammunity.org/2023/formulas/mathematics/college/ttb05udgpph8dod0a1zu4rpijys1gy8suw.png)
![1\text{ cubic yard = 3 ft x 3ft x 3ft = }27ft^3](https://img.qammunity.org/2023/formulas/mathematics/college/s0t87x0s5bkjxwq2fstodukjc6eqrjibz5.png)
![\begin{gathered} \text{Let the radius of the pool = ( 6+x ) feet} \\ \text{Let the width of the concrete that is used to } \\ \text{create the circular border = 6 feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hfe9lxda19hgc221ajyoh9vtg7erj9ivc9.png)
![\text{Let the depth of the border = 6 inches = }(6)/(12)=\text{ 0. 5 inches}](https://img.qammunity.org/2023/formulas/mathematics/college/53nhex3d9p3tijv1i7ap0kxizbrnhzguwg.png)
Step 3:
![\begin{gathered} U\sin g\text{ } \\ \pi R^2h\text{ - }\pi r^2\text{ h = 27} \\ \pi(6+x)^2\text{ 0. 5 - }\pi(6)^2\text{ 0. 5 = 27} \\ \text{0. 5}\pi(x^2\text{ + 12x + 36 - 36 ) = 27} \\ 0.\text{ 5 }\pi(x^2\text{ + 12 x) = 27} \\ \text{Divide both sides by 0. 5 }\pi\text{ , we have that:} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w2g4fe352yyxscdqlwj3h13w59llsybtlb.png)
![x^2\text{ + 12 x - (}\frac{27}{0.\text{ 5}\pi})=\text{ 0}](https://img.qammunity.org/2023/formulas/mathematics/college/pr9tq7kp2d9657nxm28uz3pbyf6mdsibew.png)
Solving this, we have that:
CONCLUSION:
From the calculations above, we can see that the value of the x:
( which is the width of the border ) = 1. 293 feet
(correct to 3 decimal places)