There are 6 teachers and 15 students to choose from
To form a committee of 5 teachers and 4 students
The combination rule will be applied
From 6 teachers, The number of ways 5 teachers can be selected is
![^6C_5](https://img.qammunity.org/2023/formulas/mathematics/college/qwmhh3drw5y4xqzqw9t9lj8fsnnsgfjql5.png)
From 15 students, the number of ways 4 students can be selected is
![^(15)C_{4^{}}](https://img.qammunity.org/2023/formulas/mathematics/college/si89kphfgn2b493xyjkqzq7ab0023rsc7c.png)
Therefore, the total number of ways a committee of 5 teachers and 4 students can be formed from 6 teachers and 15 students is
![^6C_5*^(15)C_{4^{}}](https://img.qammunity.org/2023/formulas/mathematics/college/1hjrft2qc4f4pbobcunkca49mx8rczkgvy.png)
Simplifying this gives
![^6C_5*^(15)C_{4^{}}=(6!)/((6-5)!*5!)*(15!)/((15-4)!*4!)](https://img.qammunity.org/2023/formulas/mathematics/college/qsqm8ahldj6kmynowkce3bnzanhevmokjr.png)
This further gives
![\begin{gathered} ^6C_5*^(15)C_{4^{}}=(6!)/(1!*5!)*(15!)/(11!*4!) \\ ^6C_5*^(15)C_{4^{}}=(6*5!)/(1*5!)*(15*14*13*12*11!)/(11!*4*3*2*1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2p35hjmiytf83q6j12v5xdxxk2210w2qtd.png)
Cancel out common factors
![\begin{gathered} ^6C_5*^(15)C_{4^{}}=6*(15*14*13*12)/(4*3*2*1) \\ ^6C_5*^(15)C_{4^{}}=6*(32760)/(24) \\ ^6C_5*^(15)C_{4^{}}=6*1365 \\ ^6C_5*^(15)C_{4^{}}=8190 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9zxz0mw9v88asdt2p1fh3q0b50gg8z5k4i.png)
Therefore, the number of ways the committee can be formed is 8190 ways