Given Data:
The upstream speed is, 25 miles/hr.
The downstream speed is, 35 miles/hr.
The total time is, 12 hr.
Let d be the distance traveled. He can travel 25 miles/ hr in upstream, so the time taken will be,
![t=(d)/(25)](https://img.qammunity.org/2023/formulas/mathematics/college/7xd271dpp6rocwlb0dsks3flwcbm687cc7.png)
He can travel 35 miles/ hr in upstream, so the time taken will be,
![t^(\prime)=(d)/(35)](https://img.qammunity.org/2023/formulas/mathematics/college/p53regcvr7ayeeyna63ln5cgs8o8tpvcmy.png)
Total time is, 12 hr. So we have,
![\begin{gathered} 12=(d)/(25)+(d)/(35) \\ 12=(d)/(5*5)+(d)/(7*5) \\ 12=(1)/(5)((d)/(7)+(d)/(5)) \\ 12*5=(d)/(7)+(d)/(5) \\ 60*35=5d+7d \\ 2100=12d \\ d=(2100)/(12)=175 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gtweca815fxgthyr6tj5if36zzgr4bzhyf.png)
Therefore the total distance is, 350 mile