We are asked to find out the values of sine 60° and sine 30°
Recall from the trigonometric ratios,
![\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/bzzn3f7mj87d6awx4jyitkxgatgeup6pyg.png)
From the given triangle,
With respect to angle 60°, the opposite side is 25√3 ft and the hypotenuse is 50 ft.
Let us substitute these values into the above sine ratio
![\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin 60\degree=\frac{25\sqrt[]{3}}{50} \\ \sin 60\degree=\frac{\sqrt[]{3}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/41docacbmavaz3fiqrc3xsu20rfy4yc5bg.png)
So, the value of sine 60° is √3/2
From the given triangle,
With respect to angle 30°, the opposite side is 25 ft and the hypotenuse is 50 ft.
Let us substitute these values into the above sine ratio
![\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin 30\degree=(25)/(50) \\ \sin 30\degree=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vyh1yi9njiwydivl6l33dtsbewj7c4m6tg.png)
So, the value of sine 30° is 1/2
Therefore, the sine of 60゚ angle is √3/2 and the sine of 30゚ angle is 1/2