SOLUTION
Consider the image given below.
From the image above,
![\begin{gathered} \angle V=(x-2)^0 \\ \angle W=(x-2)^0 \\ \angle X=(4x+4)^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/net8ipnhhrih6nugnq5nkz83n06x2xb3u4.png)
To find the measures of each angle, we need to obtain the value of small x in the diagram.
Applying the rule: Sum of angle in a triangle is 180 degrees
![\angle V+\angle W+\angle X=180^0](https://img.qammunity.org/2023/formulas/mathematics/high-school/n22vo2r9pqr3rqv9nxr5eeauacaxpdcckt.png)
Then substitute the given expression, we have
![\begin{gathered} (x-2)^0+(x-2)^0+(4x+4)^0=180^0 \\ Then \\ x-2+x-2+4x+4=180^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/efvdr0kyzescwzomkjiuqgcstcfwh2u337.png)
Collect like terms and add
![\begin{gathered} x+x+4x-2-2+4=180^0 \\ 6x-4+4=180^0 \\ \text{then} \\ 6x=180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/eo08hpighigm785suduyairazes2rqir9a.png)
Divide both sides by 6, we have
![\begin{gathered} (6x)/(6)=(180)/(6) \\ hence \\ x=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rvhgf7qybr0jo4k89nomp668x0p34k8nik.png)
hence, x=30
Then substitute the value of x to obtain the measure of each angles.
![\begin{gathered} \angle V=(x-2)^0 \\ \text{Then x=30} \\ \angle V=30-2=28^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7hcvr7m44ubhmj7en8qk3dtn5t8ryeb8r4.png)
Since the triangle is an issoceles triangle, then
![\angle W=28^0](https://img.qammunity.org/2023/formulas/mathematics/high-school/9249kaxt6quvnjw6ch7il4m269y8t6xdph.png)
Hence
![\begin{gathered} \angle X=(4x+4)^0 \\ \angle X=(4*30+4)^0=(120+4)=124^0 \\ \text{hence} \\ \angle X=124^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ktm14g7eupe1qai20xjlr88pi2ba2blbgb.png)
Therefore
Answer : ∠V= 28°, ∠W=28°, ∠X=124°