Given:
Total ticket = 321
Total collection = $3535
Adult ticket price = $15
Child ticket price = $5
Find-:
(1)
Number of adult tickets sold
(2)
Number of child tickets sold
Explanation-:
Let the number of adult tickets = x
Let the number of child tickets = y
If the total ticket is 321 then,
![x+y=321........................(1)](https://img.qammunity.org/2023/formulas/mathematics/college/n7ydw0qumucgs98z7wi9gjiegqf31htfgu.png)
Price for adult ticket is:
![=15x](https://img.qammunity.org/2023/formulas/mathematics/college/t842d5hs9cnypj1ni0x0g4g8ng4e35qluy.png)
The price for child ticket is:
![=5y](https://img.qammunity.org/2023/formulas/mathematics/college/t4bbrkw4ibldj92cfe3magrdi9ms4pexfd.png)
total price is $3535 then,
![15x+5y=3535...................(2)](https://img.qammunity.org/2023/formulas/mathematics/college/kquolyreb9f8hmo2o26wpqtxzppdbojmbp.png)
From eq(1)
![\begin{gathered} x+y=321 \\ \\ 5x+5y=1605..............(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8yezlh4fuvlksysfcbb8ajhnaov164xkhm.png)
So eq(2) - eq(3) is:
![\begin{gathered} (15x+5y)-(5x+5y)=3535-1605 \\ \\ 15x-5x+5y-5y=1930 \\ \\ 15x-5x=1930 \\ \\ 10x=1930 \\ \\ x=(1930)/(10) \\ \\ x=193 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f2yyqplkpu5i8w9xf07a4v8lu1kq2oacqo.png)
Put the value in eq(1) then,
![\begin{gathered} x+y=321 \\ \\ 193+y=321 \\ \\ y=321-193 \\ \\ y=128 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qdvc2ghgfpvj9at5fki8b1e2g6eeb5aake.png)
So,
Number of adult tickets = 193
Number of child tickets = 128